### MiniBooNE: Up and Running

Morgan Wascko Louisiana State University



#### Outline

- Motivation
- MiniBooNE Overview
- Physics at MiniBooNE
- Current Status
- First Data!

## Neutrino Oscillations The Evidence So Far ...

Solar  $\Delta m^2 \sim 10^{-(4\sim5)}$ 

Atmospheric  $\Delta m^2 \sim 3 \times 10^{-3}$ 

both are well established

LSND  $\Delta m^2 \sim 10^{-(0 \sim 1)}$ 

Three  $\Delta m^2$  scales! Unconfirmed result...



#### Motivation for MiniBooNE The LSND Oscillation Signal

Excess:  $87.9 \pm 22.4 \pm 6.0$  evts.

Oscillation probability:  $(0.264 \pm 0.067 \pm 0.045)\%$ .





 $3.8 \sigma$  statistical significance of excess.

Confirmation is Crucial!

#### Motivation for MiniBooNE The LSND Oscillation Signal (2)

Karmen result excludes part of LSND allowed region

...but a lot of phase space is left open

Plot taken from Church, Eitel, Mills, and Steidl hep-ex/0203023



#### MiniBooNE Sensitivity to v<sub>e</sub> Appearance

- Same L/E as LSND
  - Higher statistics
  - Different systematics (different L, E)
- MiniBooNE
   sensitivity will cover
   entire LSND allowed
   region at 5 σ level in
   two years



# MiniBooNE Sensitivity to $v_{\mu}$ Disappearance

- Can help distinguish
   3+1 from 2+2
   Allowed Regions
  - ComplementaryAnalysis
  - Lower  $\Delta m^2$  reach than CDHS
- MiniBooNE will have HIGH statistics for ν<sub>μ</sub> disappearance!



## MiniBooNE Experiment: Beamline Overview

**☞8GeV** protons from Fermilab Booster

Incident on Be target

Magnetic horn focuses interaction products



πand K secondaries traverse decay pipe

Traverse beam absorber + berm

vs proceed through detector hall

## MiniBooNE Experiment: Detector Overview

- 12m diam. sphere
- lined with 8" PMTs
  - 1280 main region
  - 240 veto region
  - 10% coverage
- 800 tons of mineral oil
- Custom electronics from LSND
- All new Data Acquisition
   System



## MiniBooNE Experiment: Particle Identification



#### MiniBooNE Experiment: Neutrino Fluxes

$$\mathbf{p} + \mathbf{Be} \rightarrow \pi^+, \mathbf{K}^+, \mathbf{K}^0_{\mathbf{L}}$$



### The beam is comprised almost entirely of $V_{II}$

$$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$$

$$\mathbf{K}^{+} \rightarrow \mu^{+} \nu_{\mu}$$

$$\rightarrow \pi^{+} \pi^{0}$$

### Intrinsic $v_e$ flux is small compared to $v_u$ flux

$$\begin{split} & \boldsymbol{K^0_L} \rightarrow \boldsymbol{\pi^+ e^- \nu_e} \\ & \boldsymbol{\mu^+ \rightarrow e^+ \nu_e \nu_\mu} \\ & \boldsymbol{K^+ \rightarrow e^+ \nu_e} \end{split}$$

#### MiniBooNE Experiment: Numbers of Events



Approximately 500,000  $v_{\mu}C$  events expected in MiniBooNE with two years of running.



Intrinsic v<sub>e</sub> background: 1,500 events

c = x

μ mis–ID background:

500 events

 $\mathbf{c} = \mathbf{x}$ 

 $\pi^0$  mis-ID background:

500 events

 $\mathbf{c} = \mathbf{x}^{\nu_{\mu}}$ 

LSND-based  $\nu_{\mu} \rightarrow \nu_{e}$ :

**1,000** events

### MiniBooNE Experiment: Blindness Scheme

- Blind analysis is used to prevent bias
  - Encourages sound development of Monte Carlo
- In a nutshell:
  - Start by putting all but clean  $v_{\mu}$  CC events "in the box"
  - Take 1000 open event to use for studies
  - Open the box incrementally to extract clean  $\mu$  and  $\pi^0$  samples

#### Non-Oscillation Physics: v-C Cross-Section Measurements

- Quasi-elastic v-C crosssections are key for the oscillation measurement
- We will improve on the current uncertainty in the total vcross—section around 1 GeV



#### Non-Oscillation Physics: MiniBooNE the Supernova Detector



- Estimated sensitivity:  $190 \text{ v}_{\text{e}} \text{ p} \rightarrow \text{e}^{+} \text{ n for a}$ galactic supernova at 10 kPc
- Supernova trigger in action! 15.2 µsec holdoff after cosmic rays + 99% veto efficiency cuts michel e
- <sup>12</sup>B decay background peaked at lower energy, cosmic ray background peaked at higher energy

M. K. Sharp, J. F. Beacom, J. Formaggio, hep-ph/0205035

#### Non-Oscillation Physics: Anomalous Neutrino Magnetic Moment

- If non-zero  $\mu_{\nu}$ ,  $\nu s$  can have EM interactions  $\rightarrow$  large contribution to  $\nu_e$  scattering cross-section at low electron recoil energy
- Expected sensitivity:
   ~ 100 ν—e scattering
   events will give a factor
   of 2 improvement over
   LSND μ<sub>ν</sub> limit

B. Fleming and J. Beacom, in preparation



Weak and EM Contributions to the  $\nu-e$  Cross Sections



#### More Oscillation Related Physics: Test of CP and CPT



- MiniBooNE can run in vor anti–vmode
- Recent CPT violating models account for all current experimental
  ν̄<sub>e</sub> oscillation results with
  ν̄<sub>τ</sub> only 3 vs

G. Barenboim, L. Borissov, J. Lykken, A. Yu. Smirnov, hep-ph/0108199

# Current Status of MiniBooNE: Protons on target!

- Protons on target for physics running since August 24, 2002
- Average intensity is about 10% of desired level
- Shown in plot:
  - Total
  - MiniBooNE
  - Stacking



#### MiniBooNE's First Data

Cosmic muon enters detector and decays; both are observed



PMT hit time (μs)



#### Fit Lifetime:

$$\tau = 2.12 \pm 0.05 \,\mu s$$

Expected  $\mu$  lifetime in oil 2.13  $\mu s$ 

with 8%  $\mu^-$  capture on carbon.

#### Current Status of MiniBooNE: Neutrino Events in the Detector!

- Cuts:
  - >200 hits in tank
  - <6 hits in veto region
- Average rate >1 Hz
- Typical pulse has  $3.5 \times 10^{12}$  protons
- 2.3×10<sup>-15</sup> int/proton OR 1 v in detector every 120 pulses



#### MiniBooNE Beam Data: Looking closer

Angular distribution is peaked forward – quasi–elastic scattering



#### MiniBooNE Beam Data: Analyzing Events in the Detector



Nice, clean ring

Stopping muon

#### MiniBooNE Beam Data: Events in the Detector

Filled circle

Through-

going

muon

Yang Institute Conference

#### Current Status of MiniBooNE: Summary

- MiniBooNE is running and taking physics data.
- Detector is working well.
- The beam is steadily improving.
- Two years of running in ν mode
  - Two years of anti–v mode to follow
- Will cover entire LSND region at 5σ level

#### Motivation for MiniBooNE The LSND Experiment

800 MeV proton beam from LANSCE accelerator

Data Collected 1993–98

30 m baseline  $20 \text{MeV} < E_{\text{ve}} < 55 \text{MeV}$   $L/E \sim 1 \text{m/MeV}$ 

167 tons liquid scintillator

Signal Reaction:

$$\bar{\nu}_{e} p \rightarrow X e^{+} n$$

$$n p \rightarrow d \gamma (2.2 MeV)$$

